cbd for broken bones

December 15, 2021 By admin Off

Recent findings: The endocannabinoid system consists of endogenous ligands, receptors, and enzymes. The main cannabinoids found in the cannabis plant are Δ 9 -tetrahydrocannabinol (THC) and cannabidiol (CBD). Cannabinoid receptors CB1 and CB2 are expressed in bone and regulate bone homeostasis in rodents and humans. CBD treatment was shown to enhance fracture healing in rats. Recent studies in mice indicate that strain, age, and sex differences dictate the skeletal outcome of the EC activation. CBD treatment was shown to enhance bone healing, but needs validation in clinical trials. While research shows that EC activity protects against bone loss, studies on CB1 and CB2 agonists in bone regeneration models are lacking. Whether modulating the EC system would affect bone repair remains therefore an open question worth investigating.

Purpose of review: Here, we overview the latest findings from studies investigating the skeletal endocannabinoid (EC) system and its involvement in bone formation and resorption.

Keywords: Bone; CB1 receptor; CB2 receptor; CBD; Cannabinoid; Cannabis; Endocannabinoid; Fracture; Osteoporosis; Skeleton.

Cannabinoid ligands regulate bone mass, but skeletal effects of cannabis (marijuana and hashish) have not been reported. Bone fractures are highly prevalent, involving prolonged immobilization and discomfort. Here we report that the major non-psychoactive cannabis constituent, cannabidiol (CBD), enhances the biomechanical properties of healing rat mid-femoral fractures. The maximal load and work-to-failure, but not the stiffness, of femurs from rats given a mixture of CBD and Δ(9) -tetrahydrocannabinol (THC) for 8 weeks were markedly increased by CBD. This effect is not shared by THC (the psychoactive component of cannabis), but THC potentiates the CBD stimulated work-to-failure at 6 weeks postfracture followed by attenuation of the CBD effect at 8 weeks. Using micro-computed tomography (μCT), the fracture callus size was transiently reduced by either CBD or THC 4 weeks after fracture but reached control level after 6 and 8 weeks. The callus material density was unaffected by CBD and/or THC. By contrast, CBD stimulated mRNA expression of Plod1 in primary osteoblast cultures, encoding an enzyme that catalyzes lysine hydroxylation, which is in turn involved in collagen crosslinking and stabilization. Using Fourier transform infrared (FTIR) spectroscopy we confirmed the increase in collagen crosslink ratio by CBD, which is likely to contribute to the improved biomechanical properties of the fracture callus. Taken together, these data show that CBD leads to improvement in fracture healing and demonstrate the critical mechanical role of collagen crosslinking enzymes.

Keywords: CANNABIDIOL; COLLAGEN CROSSLINKING; FRACTURE HEALING; FTIR; LYSYL HYDROXYLASE; μCT.