cbd insomnia study

December 15, 2021 By admin Off

The bioavailability of CBD varies by route of administration (Millar et al. 2019), but is generally low, between 10 and 31% (Millar et al. 2018). Oral routes have the lowest bioavailability due to first-pass metabolism, whilst inhaled routes have the highest bioavailability (Ohlsson et al. 1986). The bioavailability of sublingual CBD is between 13 and 19% (Mechoulam et al. 2002), and greater than the oral route, thus exerting effects at much lower doses, making it more efficient for users. Investigating plasma levels of low-dose sublingual CBD users, and correlating them to the subjective experience, might give important insights into the optimal dose for treating these low-level mental health problems like self-perceived stress, anxiety, and sleep problems.

With few variations, the reasons for use in our study were somewhat similar to the results from another study of 400 patients in New Zealand, who were all prescribed sublingual CBD oil with doses ranging from 40 to 300 mg/day (Gulbransen et al. 2020). This study found that the patients had an increase in overall quality of life, including improved sleep and decreased self-perceived anxiety levels and reduced pain scores.

CBD has not demonstrated any potential for abuse or dependency and is considered well tolerated with a good safety profile, according to a report released by the World Health Organization (WHO) (Geneva CANNABIDIOL (CBD) n.d.). Since January 2019, the European Union (EU) has classified CBD as a novel food, implying that before 1997, consumption was insignificant. Each country has implemented the regulation of CBD differently. In the UK, The Food Standards Agency (FSA) recommends limiting the daily dose of CBD to 70 mg (Cannabidiol (CBD) n.d.). However, researchers have used doses up to 1200 mg without serious side-effects (Davies and Bhattacharyya 2019). Conversely, few clinical trials involving children with treatment-resistant epilepsy who received either 10 or 20 mg/kg of CBD (Epidiolex) for 12 weeks recorded side-effects, such as a reversible rise in liver enzymes (Devinsky et al. 2018a; Thiele et al. 2018).

One hundred sixty-five of 387 (42.6%) endorsed using CBD for self-perceived anxiety. In response to the question “how does CBD affect your anxiety levels”, participants responded that they felt less anxious (141/163 (86.5%)), followed by “no difference (I still suffer from the same degree of anxiety)” (21/163; 12.8%), and one person (0.6%) noted greater anxiety. Moreover, participants were asked how often they thought about problems when they were supposed to be relaxing, compared with before they started taking CBD. We found that just 96/163 (58.9%) of respondents thought about their problems less than before, followed by “it hasn’t changed (I still think a lot about problems” (55/163; 33.7%), followed by “it hasn’t changed (I did not think about problems a lot before)” (11/163; 6.7%), followed by (1/163; 0.6%) of respondents reporting thinking about problems more than before.

The most significant findings were that many CBD users reported that CBD could improve sleep problems, stress, and anxiety and be used for general health and wellbeing. In the detailed results below, you can find the demographics of our survey population (Table 1), the CBD use patterns (Table 2), and logistic regression and OR’s for the different subgroups. The indications for CBD use are shown (Fig. 1), as well as how CBD affects sleep (Fig. 2), and other effects of CBD (Fig. 3). Using CBD for sleep was associated with taking it in the evening, and using CBD for anxiety or stress was associated with the sublingual route. Females had higher odds of using CBD for anxiety and men for post-workout. Details of the results can be found below.

CBD and self-perceived stress.

The sample ( N = 387) consisted of 61.2% females, mostly between 25 and 54 years old (72.2%) and primarily based in the UK (77.4%). The top 4 reasons for using CBD were self-perceived anxiety (42.6%), sleep problems (42.5%), stress (37%), and general health and wellbeing (37%). Fifty-four per cent reported using less than 50 mg CBD daily, and 72.6% used CBD sublingually. Adjusted logistic models show females had lower odds than males of using CBD for general health and wellbeing [OR 0.45, 95% CI 0.30–0.72] and post-workout muscle-soreness [OR 0.46, 95%CI 0.24–0.91] but had higher odds of using CBD for self-perceived anxiety [OR 1.60, 95% CI 0.02–2.49] and insomnia [OR 1.87, 95% CI 1.13–3.11]. Older individuals had lower odds of using CBD for general health and wellbeing, stress, post-workout sore muscles, anxiety, skin conditions, focusing, and sleep but had higher odds of using CBD for pain. Respondents reported that CBD use was effective for stress, sleep problems, and anxiety in those who used the drug for those conditions.

Corroon et al. found a more even distribution between various application methods with the most popular being sublingual CBD (23% vs 72,6% in our study sample). Our approach of recruiting respondents through email databases of non-vape CBD brands may explain why the sublingual administration route is much more frequent in our study than in the American survey.

A total of 430 people started the survey, of whom 15 (3.48%) did not respond to any questions, and 28 (6.5%) reported they did not use CBD themselves (analysis of these non-users can be found in the supplementary materials). Non-CBD-users skipped most questions and had sociodemographic characteristics similar to those of CBD users. Three hundred eighty-seven (90%) reported using CBD themselves. The majority of users were females from the UK (see Table 1). In regards to other medication use, there were a total of 467 responses. 39.4% of respondents reported not taking any other medication, 14.7% “painkillers”, and 14.7% “other” (40% anxiolytics and antidepressants). No other medication was reported by more than 10% of responses.

The survey demonstrated that CBD is used for a wide range of physical and mental health symptoms and improved general health and wellbeing. A majority of the sample surveyed in this study found that CBD helped their symptoms, and they often used doses below 50 mg. Out of the four most common symptoms, three were related to mental health. Self-perceived stress, anxiety, and sleep problems constitute some of society’s biggest health problems, but we lack adequate treatment options. Further research is needed into whether CBD can efficiently and safely help treat these symptoms.

In adjusted logistic models, more males (47.4%) were using CBD for general health and wellbeing than females (30.7%; aOR 0.464, [95% CI 0.30–0.72], p = 0.001). More females were using CBD for self-perceived anxiety (47.9%) than males (34.2%; aOR 1.595, [95% CI 1.021, 2.49], p = 0.04), and for self-perceived insomnia (females 28.6%, males 17.8%; aOR 1.871, [95% CI 1.125–3.112], p = 0.015). More males (14.1%) than females (7.1%) were using CBD for post-workout sore muscles (aOR 0.462, [95% CI 0.236–0.905], p = 0.024).

The popularity of CBD can be partly explained by an increasing number of preclinical and clinical studies indicating a range of potential health benefits. However, mass media interest also plays a significant role. Studies suggest CBD might help with mental health symptoms and neurological conditions like experimentally induced anxiety (Zuardi et al. 1993), generalised social anxiety disorder (Bergamaschi et al. 2011), social phobia (de Faria et al. 2020), and conditions like PTSD (Elms et al. 2019; Shannon and Opila-Lehman 2016) schizophrenia (Zuardi et al. 2006; Leweke et al. 2012; Morgan and Curran 2008; Schubart et al. 2011), addiction (Hurd et al. 2019; Hindocha et al. 2018; Galaj et al. 2020), and epilepsy (Devinsky et al. 2017; Devinsky et al. 2018b; Cunha et al. 1980). These mental health disorders are often co-morbid and include other symptoms CBD might help with, e.g. sleep and impaired cognition. There is also data to suggest CBD could help treat neurodegenerative diseases like Alzheimer’s disease (Watt and Karl 2017; Fernández-Ruiz et al. 2013; Esposito et al. 2006), Parkinson’s disease (Fernández-Ruiz et al. 2013; García-Arencibia et al. 2007), and chronic pain conditions including fibromyalgia (Van De Donk et al. 2019), either alone or with THC (Rog et al. 2005; Berman et al. 2004; Wade et al. 2003; Svendsen et al. 2004; Notcutt et al. 2004). Additionally, in more than 30 countries, health authorities have approved CBD, under the name Epidiolex, to treat two severe forms of treatment-resistant childhood epilepsy (Dravet and Lennox-Gastaut syndrome) (Devinsky et al. 2016; Silvestro et al. 2019). Sativex, a sublingual spray containing an equal amount of THC and CBD, is also approved to treat multiple sclerosis in more than 30 countries (Keating 2017).

Self-perceived anxiety was the top-ranked reason for the use of CBD with 42.6% reporting they take CBD for this reason. Of these, 86.5% reported they felt less anxiety. There are biologically plausible reasons for the use of CBD in anxiety. Pharmacological research suggests CBD is a partial 5-HT1a receptor agonist which supports anxiolytic and stress-reducing properties (Russo et al. 2005; Resstel et al. 2009), the activation of which has been associated with anxiolytic, antidepressant, and antipsychotic effects (Zuardi et al. 1993; Bergamaschi et al. 2011; de Faria et al. 2020; Vilazodone for major depressive disorder | MDedge Psychiatry n.d.; Newman-Tancredi and Kleven 2011). CBD also modulates specifically configured GABA A receptors that may be relevant to anxiolytic effects (Bakas et al. 2017; Deshpande et al. 2011). CBD is anxiolytic under experimental conditions in animals, healthy humans and in those with generalised social anxiety disorder (de Faria et al. 2020; Elms et al. 2019; Newman-Tancredi and Kleven 2011) although large clinical trials have not been conducted. Crippa et al. administered an oral dose of 400 mg CBD or placebo, in a double-blind procedure. They found it significantly lowered feelings of anxiety, accompanying changes in limbic areas, in subjects with social anxiety disorder (SAD) (Crippa et al. 2011). Similar results were seen in a small randomised trial using a public speaking test with 600 mg CBD vs placebo (Bergamaschi et al. 2011).

37.5% of respondents reported using CBD for perceived stress, with 92.2% reporting reduced stress levels, making it the third-highest ranking reason for CBD use amongst our sample. Yet, no studies are looking directly at how CBD affects perceived stress levels. This might in part be because stress, apart from post-traumatic stress disorder, is not classified as a disease according to international disease classification (WHO | Burn-out an “occupational phenomenon”: International Classification of Diseases 2019). With more than 12.8 million working days lost because of work-related stress, anxiety, or depression in the UK (Hse 2019), the relationship between CBD and stress is an area of interest for further research. A recent study surveying social media for comments about perceived therapeutic effects of CBD products revealed that the most frequently discussed symptoms, which are not addressed in the research literature, are indeed stress and nausea (Tran and Kavuluru 2020).

The regulatory confusion, along with recent media hype, has made it hard for most people to understand the true nature of CBD. Being classified as both a medicine and a supplement in some forms, whilst an illegal substance in others leads to consumer and patient confusion and potential frustration. Therefore, this study aimed to understand users’ consumption patterns regarding dose, route of administration, and reasons for using CBD. We hypothesised that out of all reasons for using CBD, the top three would be anxiety, sleep disturbances, and stress.

In the past years, cannabidiol (CBD), one amongst hundreds of naturally occurring phytocannabinoids found in the Cannabis sativa plant, has received a lot of attention from scientific communities, politicians, and mainstream media channels. CBD is the second most abundant cannabinoid in the Cannabis sativa plant after delta-9-tetrahydrocannabinol (THC), but unlike THC, CBD is not intoxicating (Pertwee 2008). In many countries, including the UK, there is unsanctioned availability of products containing CBD, from oils and capsules to chewing gums, mints, soft drinks, gummies, and intimate lubrication gels.

Route of administration, dosing, and side-effects.

Younger respondents were more likely to use novel routes of administration, e.g., vaping or drinking. This trend correlates with data showing that more people have tried vaping (in general) amongst younger age groups (Vaping and e-cigarette use by age U.S 2018). Only 9.3% reported vaping CBD in our sample, compared with 19% in the study by Corroon et al . ( Corroon and Phillips 2018 ) . The fast onset of vaporised CBD might explain why inhaled CBD is popular for self-perceived anxiety and stress.

Amongst those who reported experiencing anxiety, adjusted logistic models comparing those who responded that CBD reduces their self-perceived anxiety with those who responded that they still suffer from anxiety found no associations with age, sex, or location. Similar results emerged for “thinking about problems”.

More than half of the users were using a daily dose below 50 mg via a sublingual route of administration. Most were using CBD daily, sometimes multiple times per day. We found that respondents who use CBD for self-perceived anxiety and stress tend to use it several times per day, whilst respondents endorsing using CBD for sleep take it in the evening, indicating that user patterns vary according to the symptoms. A recent review suggests half-life is between 1.4 and 10.9 h after oromucosal spray and 2–5 days after chronic oral administration (Iffland and Grotenhermen 2017). In the light of these findings, it may be that people are dosing CBD several times per day to maintain stable plasma levels throughout the day if managing symptoms of stress and anxiety, whilst only using CBD at night if managing sleep problems.

Route of administration did not vary by sex. There were lower odds of those aged 55+ of vaping CBD (aOR 0.176, [95% CI 0.04–0.80], p = 0.025) as well as lower odds of those aged 35–55 (aOR 0.245, [95% CI 0.10–0.59], p = 0.002) and 55+ (aOR 0.115, [95% CI 0.025–0.520], p = 0.005) in comparison to 18–34 years old for drinking CBD. Self-reported anxiety (aOR 1.78, [95% CI 1.08–2.92], p = 0.023) and those using CBD for sleep improvement (aOR 1.945, [95% CI 1.152–3.285], p = 0.013) were associated with the sublingual route. Stress was not associated with route of administration.

We developed an anonymous online questionnaire to collect CBD users’ self-reported characteristics, preferred method/s, and reason/s for using CBD. The survey was hosted on Survey Monkey Inc. (San Mateo, CA, USA). Data was collected between 10 January 2020 and 18 March 2020. The 20 questions were designed as multiple-choice questions with the option to choose either one or more answers. For some questions, respondents could write an alternative response if no option matched. We collected demographic information (age, sex, and location), CBD use patterns, reasons for use, other medication use, perceived effects, and side effects. The full questionnaire is provided in the supplementary materials.

The sample consisted of 387 current or past-CBD users who answered a 20-question online survey. The survey was sent out to CBD users through email databases and social media. Participants reported basic demographics, CBD use patterns, reasons for use, and effects on anxiety, sleep, and stress.

Most people were using less than 100 mg (72.9%) per day. Due to the high price and the lack of medical supervision, it is not surprising that non-medical CBD users are taking much lower doses than those used in clinical studies, and those prescribed for specific medical conditions (Davies and Bhattacharyya 2019; Szaflarski et al. 2018). It is important to highlight that 16.8% reported using more than 100 mg per day, and 10.2% did not know how much CBD they were using. The use of high doses CBD is concerning in light of the current FSA recommendation of restricting the dose to 70 mg CBD per day (Cannabidiol (CBD) n.d.), and it stresses the importance of better public information and communication and improved packaging and guidance from brands to consumers.

Conclusion.

Other perceived benefits of cannabidiol amongst adult cannabidiol users. Respondents were asked what other benefits or effects they feel from using cannabidiol. Participants were allowed to select multiple options. X -axis is the percentage of total responses ( n = 906)

Logistic regression on location purchased (CBD shop or other) found that those who lived outside of the UK (aOR 2.286, [95% CI 1.35–3.86], p = 0.002) and males (aOR 1.75, [95% CI 1.06–2.88], p = 0.02) had greater odds of purchasing CBD from an “other” location. Each of the primary disorders was included in the model individually, and did not significantly alter the model and were not associated with location purchased.

We found that 69.7% of users had been using CBD for less than 1 year. Moreover, only 4.1% had used CBD for more than 5 years, reflecting both that it is a fairly new phenomenon and an increasing interest in CBD in the UK, compared with the USA. A similar American survey reported that 34.6% had used CBD for less than 1 year and 53.2% more than 5 years (Corroon and Phillips 2018). At the time of writing, CBD is legal in all but three, out of fifty, American states, and many of these allow the products to contain THC. In the UK and Europe, non-prescription CBD products are not allowed to contain any THC (< 0.01%). These differences might create a divergence between European vs American consumers’ experiences, and stresses the urgency for internal and external regulation, and education about cannabinoids in Europe.

Perceived effects of cannabidiol on sleep amongst adult cannabidiol users responding to the question “how does cannabidiol affect your sleep?” Participants were allowed to select multiple options. Y -axis represents percentage of total responses ( n = 522)

Our measures were retrospective self-reported symptoms, rather than contemporaneous reports or object assessments, and thus prone to recall bias. This approach may lead to over- or under-estimation of benefits and harms. In reporting anxiety symptoms, it should be noted that many anxiety measures are self-reported, and scales are often an accurate measure of anxiety. Stress itself is not often measured, but scales assessing self-reported stress are reliable (Morgan et al. 2014). Regarding sleep problems, our measures do not accurately correspond with objective measures of sleep such as actigraphy (Girschik et al. 2012), which has implications in the epidemiology of sleep, including in the present study. Future research should use validated measures of anxiety, stress, and sleep. However, it should be noted we included responses to gain an insight where CBD may not help, with about 20% responding that CBD did not help with sleep or anxiety and about 10% saying CBD did not help with stress. There is also a risk of selection biases regarding our recruitment method from email databases of current users and social media recruiting. As we had a self-selected sample, we do not represent the general population or even the overall population of CBD users. It is more likely that respondents with a positive experience have responded to this survey, and continue to use CBD. Still, users with a negative experience may have stopped using CBD and therefore were not reached by this survey, which might further contribute to the selection biases.

The majority of users take CBD sublingually for 3–6 months (see Table 2). Those 35–54 years old (aOR 1.67 [95% CI 1.02–2.72], p = 0.04) and those 55+ (aOR 2.01, [95% CI 1.11–3.64], p = 0.02) had greater odds of using CBD daily in comparison to less than daily. There were no associations with self-perceived anxiety, stress, or sleep improvement. Females had lower odds of using CBD for greater than 1 year versus less than 1 year (aOR 0.54, [95% CI 0.38–0.88], p = 0.013) suggesting females had used CBD for less time. No associations emerged for self-perceived anxiety, stress, or sleep. There were no sex or age associations for the frequency of use, duration of use, or number of times per day. Females had a greater odds of responding that they take CBD when they need it versus males (aOR 1.79, [95% CI 1.036–3.095], p = 0.037). However, no other associations with age and sex on time of day emerged.

A total of 388 responses were made, of whom 277/388 (71%) were logged as not experiencing any side-effects. Dry mouth was experienced by 44/388 (11%), and 13/288 (3%) experienced fatigue. All other side-effects were reported less than 2% (e.g. dizziness, nausea, upset stomach, rapid heartbeat, diarrhoea, headache, anxiety, psychotic symptoms, sexual problems, trouble concentrating). No respondents reported vomiting, fainting, liver problems (raised liver enzymes in blood test), or seizures. Adjusted logistic models show no associations of age, of sex with “no side effects” or fatigue. Location of the participants was associated with dry mouth, those who lived outside of the UK had greater odds of experiencing dry mouth (aOR 2.44, [95% CI 1.25–4.75], p = 0.009). No other side-effects were analysed due to the small number of respondents citing other side-effects.

This study aimed to investigate CBD use patterns in the general population regarding the route of administration, dose, and indications for use. We found that the main indications for using CBD were self-perceived anxiety, stress, general health and wellbeing, sleep, and pain.

Cannabidiol (CBD) is one of many cannabinoid compounds found in cannabis. It does not appear to alter consciousness or trigger a “high.” A recent surge in scientific publications has found preclinical and clinical evidence documenting value for CBD in some neuropsychiatric disorders, including epilepsy, anxiety, and schizophrenia. Evidence points toward a calming effect for CBD in the central nervous system. Interest in CBD as a treatment of a wide range of disorders has exploded, yet few clinical studies of CBD exist in the psychiatric literature.

Side effects and tolerability of CBD treatment were assessed through spontaneous patient self-reports and were documented in case records. Any other spontaneous comments or complaints of patients were also documented in case records and included in this analysis.

The sampling frame consisted of 103 adult patients who were consecutively treated with CBD at our psychiatric outpatient clinic. Eighty-two (79.6%) of the 103 adult patients had a documented anxiety or sleep disorder diagnosis. Patients with sole or primary diagnoses of schizophrenia, posttraumatic stress disorder, and agitated depression were excluded. Ten patients were further excluded because they had only 1 documented visit, with no follow-up assessment. The final sample consisted of 72 adult patients presenting with primary concerns of anxiety (65.3%; n = 47) or poor sleep (34.7%; n = 25) and who had at least 1 follow-up visit after CBD was prescribed.

Objective.

Sleep and anxiety scores, using validated instruments, at baseline and after CBD treatment.

The Cannabis plant has been cultivated and used for its medicinal and industrial benefits dating back to ancient times. Cannabis sativa and Cannabis indica are the 2 main species.1 The Cannabis plant contains more than 80 different chemicals known as cannabinoids. The most abundant cannabinoid, tetrahydrocannabinol (THC), is well known for its psychoactive properties, whereas cannabidiol (CBD) is the second-most abundant and is nonpsychoactive. Different strains of the plant are grown containing varying amounts of THC and CBD. Hemp plants are grown for their fibers and high levels of CBD that can be extracted to make oil, but marijuana plants grown for recreational use have higher concentrations of THC compared with CBD.2 Industrial hemp must contain less than 0.3% THC to be considered legal, and it is from this plant that CBD oil is extracted.3.

The final sample consisted of 72 adults presenting with primary concerns of anxiety (n = 47) or poor sleep (n = 25). Anxiety scores decreased within the first month in 57 patients (79.2%) and remained decreased during the study duration. Sleep scores improved within the first month in 48 patients (66.7%) but fluctuated over time. In this chart review, CBD was well tolerated in all but 3 patients.

Often CBD was employed as a method to avoid or to reduce psychiatric medications. The CBD selection and dosing reflected the individual practitioner’s clinical preference. Informed consent was obtained for each patient who was treated and considered for this study. Monthly visits included clinical evaluation and documentation of patients’ anxiety and sleep status using validated measures. CBD was added to care, dropped from care, or refused as per individual patient and practitioner preference. The Western Institutional Review Board, Puyallup, WA, approved this retrospective chart review.

Deidentified patient data were evaluated using descriptive statistics and plotted graphically for visual analysis and interpretation of trends.

Wholeness Center is a large mental health clinic in Fort Collins, CO, that focuses on integrative medicine and psychiatry. Practitioners from a range of disciplines (psychiatry, naturopathy, acupuncture, neurofeedback, yoga, etc) work together in a collaborative and cross-disciplinary environment. CBD had been widely incorporated into clinical care at Wholeness Center a few years before this study, on the basis of existing research and patient experience.

Main Outcome Measures.

The average age for patients with anxiety was 34 years (range = 18–70 years) and age 36.5 years for patients with sleep disorders (range = 18–72 years). Most patients with an anxiety diagnosis were men (59.6%, 28/47), whereas more sleep-disordered patients were women (64.0%, 16/25). All 72 patients completed sleep and anxiety assessments at the onset of CBD treatment and at the first monthly follow-up. By the second monthly follow-up, 41 patients (56.9%) remained on CBD treatment and completed assessments; 27 patients (37.5%) remained on CBD treatment at the third monthly assessment.

Sleep and anxiety were the targets of this descriptive report. Sleep concerns were tracked at monthly visits using the Pittsburg Sleep Quality Index. Anxiety levels were monitored at monthly visits using the Hamilton Anxiety Rating Scale. Both scales are nonproprietary. The Hamilton Anxiety Rating Scale is a widely used and validated anxiety measure with 14 individual questions. It was first used in 1959 and covers a wide range of anxiety-related concerns. The score ranges from 0 to 56. A score under 17 indicates mild anxiety, and a score above 25 indicates severe anxiety. The Pittsburg Sleep Quality Index is a self-report measure that assesses the quality of sleep during a 1-month period. It consists of 19 items that have been found to be reliable and valid in the assessment of a range of sleep-related problems. Each item is rated 0 to 3 and yields a total score from 0 to 21. A higher number indicates more sleep-related concerns. A score of 5 or greater indicates a “poor sleeper.”

To determine whether CBD helps improve sleep and/or anxiety in a clinical population.

Cannabidiol may hold benefit for anxiety-related disorders. Controlled clinical studies are needed.

Setting and Sample.

CBD has demonstrated preliminary efficacy for a range of physical and mental health care problems. In the decade before 2012, there were only 9 published studies on the use of cannabinoids for medicinal treatment of pain; since then, 30 articles have been published on this topic, according to a PubMed search conducted in December 2017. Most notable was a study conducted at the University of California, San Diego’s Center for Medicinal Cannabis Research that showed cannabis cigarettes reduced pain by 34% to 40% compared with placebo (17% to 20% decrease in pain).8 In particular, CBD appears to hold benefits for a wide range of neurologic disorders, including decreasing major seizures. A recent large, well-controlled study of pediatric epilepsy documented a beneficial effect of CBD in reducing seizure frequency by more than 50%.9 In addition to endorphin release, the “runner’s high” experience after exercise has been shown to be induced in part by anandamide acting on CB1 receptors, eliciting anxiolytic effects on the body.10 The activity of CBD at 5-HT 1A receptors may drive its neuroprotective, antidepressive, and anxiolytic benefits, although the mechanism of action by which CBD decreases anxiety is still unclear.11 CBD was shown to be helpful for decreasing anxiety through a simulated public speaking test at doses of 300 mg to 600 mg in single-dose studies.12–14 Other studies suggest lower doses of 10 mg/kg having a more anxiolytic effect than higher doses of 100 mg/kg in rats.15 A crossover study comparing CBD with nitrazepam found that high-dose CBD at 160 mg increased the duration of sleep.16 Another crossover study showed that plasma cortisol levels decreased more significantly when given oral CBD, 300 to 600 mg, but these patients experienced a sedative effect.17 The higher doses of CBD that studies suggest are therapeutic for anxiety, insomnia, and epilepsy may also increase mental sedation.16 Administration of CBD via different routes and long-term use of 10 mg/d to 400 mg/d did not create a toxic effect on patients. Doses up to 1500 mg/d have been well tolerated in the literature.18 Most of the research done has been in animal models and has shown potential benefit, but clinical data from randomized controlled experiments remain limited.

A retrospective chart review was conducted of adult psychiatric patients treated with CBD for anxiety or sleep as an adjunct to treatment as usual at a large psychiatric outpatient clinic. Any current psychiatric patient with a diagnosis by a mental health professional (psychiatrist, psychiatric nurse practitioner, or physician assistant) of a sleep or anxiety disorder was considered. Diagnosis was made by clinical evaluation followed by baseline psychologic measures. These measures were repeated monthly. Comorbid psychiatric illnesses were not a basis for exclusion. Accordingly, other psychiatric medications were administered as per routine patient care. Selection for the case series was contingent on informed consent to be treated with CBD for 1 of these 2 disorders and at least 1 month of active treatment with CBD. Patients treated with CBD were provided with psychiatric care and medications as usual. Most patients continued to receive their psychiatric medications. The patient population mirrored the clinic population at large with the exception that it was younger.

A large retrospective case series at a psychiatric clinic involving clinical application of CBD for anxiety and sleep complaints as an adjunct to usual treatment. The retrospective chart review included monthly documentation of anxiety and sleep quality in 103 adult patients.

Given the promising biochemical, physiologic, and preclinical data on CBD, a remarkable lack of randomized clinical trials and other formal clinical studies exist in the psychiatric arena. The present study describes a series of patients using CBD for treatment of anxiety or sleep disturbances in a clinical practice setting. Given the paucity of data in this area, clinical observations can be quite useful to advance the knowledge base and to offer questions for further investigation. This study aimed to determine whether CBD is helpful for improving sleep and/or anxiety in a clinical population. Given the novel nature of this treatment, our study also focused on tolerability and safety concerns. As a part of the evolving legal status of cannabis, our investigation also looked at patient acceptance.

Nearly all patients were given CBD 25 mg/d in capsule form. If anxiety complaints predominated, the dosing was every morning, after breakfast. If sleep complaints predominated, the dosing was every evening, after dinner. A handful of patients were given CBD 50 mg/d or 75 mg/d. One patient with a trauma history and schizoaffective disorder received a CBD dosage that was gradually increased to 175 mg/d.